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ISOLATED-WORD SPEECH RECOGNITION USING MULTI-SECTION
VECTOR QUANTIZATION CODE BOOKS

I. INTRODUCTION

Fe

Vector Quantization {(VRQ) is a data compression principle ".] with several
successful applications, including speech coding, 2, 3.4] image coding _5.6],
and speech recognition 77.8,9,10, 11,12, 13,14,15,.6,.7]. In previous work on
speech recognition 8,9, :8], we developed a method in which isolated words are
classifled by means of the average distortion that results from encoding them
with VQ code books. In this paper. we present a generalization of that method.
The generalization, which improves recognition performance and reduces com-
putational requirements, was motivated by work of Martinez, Riviera, and Buzo
f10].

In our previous approach [16], a VQ code book is generated for each word in
the recognition vocabulary by applying an information-theoretic, iterative clus-
tering technique [ 18] to a training sequence containing several repetitions of the
vocabulary word. This clustering process removes all time-sequence informa-
tion from the training sequence and represents each vocabulary word as a set of
independent spectra. An input utterance is classified by encoding it with every
code book and finding the code book that yields the smallest average distertion.
Because the average distortion does not depend on the sequence of input speech
frames, this approach perf~rms isolated-word recognition entirely without

time-alignment.

With just four spectra in each code book, our previous approach achieved
97.7% accuracy for speaker-dependent recognition of a twenty-werd vocabulary
(i8]. With eight spectra in each code book, the accuracy increased to 98.8%

(18]. These results showed that much more can be done without time-sequence

information than is commeonly assumed. For suitably chosen vocabularies,
Manuscript approved April 20, 1984,
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characteristic spectra contain enough information for recognition, and
information-theoretic clustering does a good job of extracting that information

from training data.

To improve recognition performance and to decrease computational com-

plexity, we have been investigating ways of incorporating time-sequence infor-
mation into the recognition procedure. Here, we present results for a new
method that incorporates time-sequence information by means of sequences of
VQ code books that we refer to collectively as multi-section code booKks. A
separate multi-section code book is designed for each word in the recognitien
vocabulary by dividing the words in the code book’'s training sequence tnto
equal-length sections and designing a standard VQ code book for each section.
Unknown words are classified by dividing them into appropriate sections, per-
forming VQ on a section by section basis, and finding the multi-section code
book that yields the smallest average distortion. The new approach reduces to
our previous apprcach when the number of sections is reduced to cne. Hence-
forth, we refer to our previous approach as the single-section case. Preliminary

results for the muliti-section approach were reported in 12, 17].

VQ has also been used by others to reduce the computational and memory
requirements of existing isolated-word recognition approaches _7, .1, 13, 14, 5].
In these approaches, spectra from a single, large VQ code book are used to
replace the spectra of both input speech frames and stored reference data. Qur
approach is quite different, both because we design separate code books for
each word in the recognition vocabulary. and because we aveoid standard

methods of time alignment.

After explaining our speech recognition approach in Section II, we describe

the data base and experiments in Section III. Section [V contains the results for

[N E—
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speaker-independent recognition, and Section V contains results for speaker-
dependent recognition. We discuss computational considerations 11 Section VI,

and we present some general conclusions in Section VIIL

II. APPRCACH

In this section, we give background information and describe the multi-
section approach. We begin by describing VQ and explaining its role in our
isolated-word recognition approach. We then discuss distortion measures, linear

prediction parameters, and figures of merit.

A. Vector Quantization

VQ is an information-theoretic data compression principle introduced by
Shannon in the late 1950's [19]. For a specified transmission rate, VQ's objective
is to find the set of reproduction vectors, or code book, that represents an infor-
mation source with minimum expected "distortion”. The data compression is
achieved by transmitting a reproduction vector index rather than the original
source vector. In general, the selection of a perceptually meaningful distortion
measure and the construction of an optimal code book are difficult problems.

For speech, however, good choices exist [2, 3].

Speech coding by VQ is a narrow-bandwidth speech coding technique based
on linear predictive coding (LPC) [2,3]. Using estimates cf the sample auto-
correlation function that are measured in each frame, the shape of the speech
spectrum in each frame is encoded as the index of a prestored set of LPC
parameters that define an autoregressive model and is called a codeword. The
LPC parameters used are the inverse fliter gain squared ¢ and the linear
predictive coeflicients a;, i=1, - -, M, with e¢=1. The collection of possible
codewords is called a code book. Let C={C,.Cp - - - .Cy} be a code book of ¥V

codewords (, each deflning an autoregressive model and comprising a set of

LPC parameters. Let S; be the autocorrelation estimates from the jth frame of
3
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the speech to be coded. Then the spectrum shape of the jth frame is coded dy
identifying the codeword (, that "best represents” S; according to the

"nearest-neighbor rule”

4(S;.G,) = min &(S;.G),

—
'
~——

for some distortion measure 4.

Vector quantization code books are designed to minimize the average dis-
tortion that results from enceding a long training sequence of speech frames. In
particular, if T;, 7=i, - - L is such a training sequence, the code book C is

designed so that
fjgmgn 4{T5.G) (2)

achieves at least a local minimum. If the training sequence consists of typical
speech and it is represented with a small average distortion by the code book,
then C should encode new speech with a similariy small distortion. In practice,
code books are designed by an iterative, clustering technique. The algorithm
used here is based on the work in [18,2]. Put simply. the L frames of the train-
ing sequence are divided into N clusters such that all frames in the same cluster
hav: similar spectrum shapes. The N codewords are the centroids of these clus-

ters.

B. V@ Word Recognition

In speech coding by VQ, a single code book 1s designed from a long training
sequence that is representative of all speech to be encoded by the system. In
the single-section approach to isolated word recognition 8,9, 8], we used a
separate code book for each word in the recognition vocabulary. We designed

each code book from a training sequence containung repetitions of one




vocabulary word. For example, a code book for the word "seven' would be
designed by running the vector quantizer design algorithm on a training
sequence of several repetitions of the word “seven’. To classify an unknown

word, it is first enceded using each of the code books and the average distortion

for each code book is recorded. The unknown word is then classified according )

to the code book vielding the lowest average distortion.

Our new method, based on .0], represents each vocabulary word as a
time-dependent sequence of section code books, which we cail a muiti-section
code book. New words are classified by performing VQ and finding the muitr-

section code book that achieves the smallest average distortion.

To be more precise, let ¥V be the number of words in the recognition voca-
bulary, and let T, be the number of utterances in the training sequence used to
design code book C, for the £ vocabulary word, where k=1, - ,V. Also, let
Fq be the number of frames in the g** utterance in the training sequence for
Ce where g=1, - - .7k, and finally, let Unge be the m®™ frame in the g% training
utterance for C, where m=1i, - F,. Then there are V multi-section code
books C,. each comprising a sequence of VQ section code books C,;. The section
code book Cg; is designed using n frames from each tramning utterance for the
k™ vocabulary word. That is, C,; is designed from the frames Upnge. where
m={j=1)n+l, - - jn, and ¢g=1, - - T,. In particular, C,, is designed from the
first n frames of each training utterance for the k¥ word in the recognition
vocabulary, C.z from the second n frames, ete. We call n the compression faé-
tor - it is the number of frames that are spanned per section. If, for a particu-
lar training utterance ¢, m is greater than Fq,,. the corresponding frames Ungqe
lie beyond the end of the word and are not included in the training sequence for

Cys. Finally, let G, i=1.....Np; be codewords in section code book C,;. We call

POV Ty TR

gy




the ¥V multi-section code books {C; : k=1, - - - V] a code book set.

Suppose a new utterance to be classified contains L frames, and F, is the

3
i
P
¥
d

set of autocorrelation estimates from the i{th frame {{=1,....L). Now let D, be E

the querage distortion resulting from coding the unknown utterance with the

code book Cy,

s
Dy =%fdkj- 3)

where S is the number of section code books in C,, and

min (in, L]
gy = "5 M ain a7 Gy, (o

i=(j-)m+1 *
is the total distortion from coding the j** section of the input with the j** sec-
tion code book C,; of C,, and where n is the compression factor. Then the utter-

ance is classified as the 7** word in the recognition vocabulary, where

D, = min Dy )

It desired, one can select a set of threshold values Dpy, and require D, <Jgy, In

(3) for a valid classification. This can improve classification reliability.

1, in the above description, all words are aligned at their beginnings. we call
the approach left-aligned. In the left-aligned case, variations in speaking rates
often result in several sounds being included in the training sequences for indivi-
dual section code books. To reduce this effect, we also tried linearly normalizing

all training sequence and classification utterances to the same length. We call

this approach length-normalized.

In the length-normalized approach, the number of sections in the input

word is always equal to the number of section code books. In the left-aligned

1
|
|
z.

approach, however, the input word can have more or less sections than the code l

|
5_
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books: we stop encoding a word in a code book when we run out of either input
word frames or code book sections.

In the foregoing terms, the approach in _.0] corresponds to left-alignment
with n=!. For left-alignment with n greater than or equal to the maximum
number of frames in all the training utterances, the multi-section approach

reduces to our previous single-section approach. 8,9, 16]

C. Multi-Section Code Books

Bach classification code book C, is designed from a separate training
sequence containing repetitions of the kth word in the recognition vocabulary. A
speaker-dependent code book is made from a training sequence spoken by one
person. The resulting code books are then used to classify additional utterances
from that speaker. For speaker-independent code books, the traimng sequence
for each code book is spoken by several people and the code books are used to

classity additicnal utterances from different people.
We used three types of multi-section code books:
(a) fixed-size code books;
(b) fixed-distortion code books;
(¢) unclustered code books.
The three code book types are further discussed below.
As the name implies, in a fized-size code book the section code book size

N, .3 specified ahead of time and the design algorithm chooses .Vy; codewords

4
that minimize the average distortion resulting from encoding the training
sequence for a particular section code book. Section code book sizes are limited
for convenience to powers of 2, i.e., N; =2™, where 7, is called the rate of C,;.

All section code books (and thus multi-section code books) in a fixed-size code

book set have the number of code words.

*



For a fized-distortion code book, the design algorithm increases the section

code book size until it can design a section code book that encodes the training
sequence with an average distortion that is less than or equal to a pre-spec:fec
value T. All section code books 1t a fixed-distortion code book set are generated
with the same average distortion threshold and can therefore have different
sizes. Like fixed-size section code books, the size of fixed-distortion section

code book are limited to powers of 2.

The third type of code book i1s the unclustered code book. These are gen-
erated without the clustering algorithm. simply by making a codeword out of
each frame in the training sequence. Cur motivation for considering unclustered
code books was twofold. The first was computational efficliency and convenience
— generating them is much easier than generating clustered code bocks. The
second was as a measure of performance. Since the clustering procedure
attempts to find spectrum shapes that are representative of the training
sequence, the effectiveness of clustering can be evaluated by comparing the
performance of clustered and unclustered code books designed from the same

training sequence.

D. Distortion ‘Measures

In generating code books for voice coding., two distortion measures are
effective [2,20]. They are the [takura-Saito (d;s) and gain normalized [takura-
Saito {dgy) distortion measures. For two power spectra f(38) and f (%), the d;s

distortion between them is




f

dis(f.f) = fﬂ-gl:-b; - ln% - ] (6)

For power spectrum estimates f and f that have the autoregressive {LPC) form

o?

11’ = — 12
f\ ) 'A(z)_z \?)
where
Alz) = i gz~
& =0
and z=exp(i¥), the dgy distortion is given by
dovif P = s Ly = & - (®)

where

a=r{0fFa(0)+ 2% r(n)Faim).
n=l

- lli'u -
rc(n) = 2:%isn,
=0

and where 7{n) are the time-domain autocorrelations of f (¥).

Equations {6) and {7) show that d;s depends on both the spectrum shape
and the gain {0%). Thus, using it in {2) to design code books results in clusters
that are sensitive both to spectrum shape and gain. Using dgv. however, leads
to clusters that depend onl; on spectrum shape. After extensive speech recog-
nition experiments comparing the performance of these two distortion meas- H
ures using single-section code books [ 18], we conciuded that dgy code books are
better for speech recognition than d;s code books, particularly when using smail >

code books built from short training sequences. Thus, we used dgy code books

in the work reported herein.




For the classification distortion measure in {(4), we considered three
choices: d;s5, dgy. and the gain optimized /takura-Saito {d;p) distortion meas-

ure.
deolf . F) = min dis(f AF)
(9)

e E S

Like dqy. dgp is sensitive to spectral shape only. Properties of all three distor-

tion measures are discussed in [2:]. In our work with single-section code books
18], we found dgp to be the best choice, and we used that same choice in the

work reported herein. For LPC spectra of the form (7). dgy can be expressed as

deo(f.f) = In{a) ~In{d?). (.0)

E. LPC Parameters

LPC parameters for both code book generation and utterance classification
were generated using the autocorrelation method with Hamming windowing.
Except for N, the number of points to shift between successive speech frames,
we chose analysis conditions for compatibility with the Navy's 2.4-kbs LPC-.0
system{22): analysis window width = 130 points, filter order = .0, and pre-
emphasis=94%. When using the length-normalized approach, .V was adjusted to
satisfy the normalization length requiremment; however, when using the left-
aligned approach, N=180 was used as is done for the Navy’'s LPC-.0 system. The
LPC analysis parameters used in classifications were always chosen to match

those used in generating the code books.

10
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F. Pigures af Herit

The error rates reported in this paper are substitution error rates. We
forced a choice for each utterance presented to the recognizer algorithm, and

we presented only utterances that contained legitimate vocabulary werds.

We used two figures of merit in evaluating the experiments. The first 1s sim-
ply the recognition accuracy. The second attempts to quantify the extent to
which the classifications are correct or incorrect. In particular, suppose that
the input utterance is the mth word in the recognition vocabulary. For correct
classification, D, should be the smallest of the average distortions {3) ~ Le.,

Dr=Dp {see (5)). Define

D" = gn o (

[y
b
~

as the smallest average distortion of all code books except the correct one, and

define

D.-Dm (
. \

D i2)

R =

If the classifization is correct, £>0; if the classification is incorrect, £<0. For
correct classifications, R is the fractional difference between the distortion of
the correct code book, and the distortion of the next best choice - a large value
of R means that the correct code book stands out clearly from the other
choices. For each experiment, we computed the number of errors, the average

value of R {Rg ). and the standard deviation of R (R,).

I11. EXPERIMENTAL 3ACKGROUND

Our experiments were conducted using a data base that was prepared by

i Texas Instruments, Inc. (TI) during a systematic test of discrete-utterance




recognition devices _23]. A data base should be used solely for either turung or
testing a recognition algorithm. To balance the conflict between tuning and
unbiased testing, we chose the following procedure. We first tuned the aigorithm
based on prior experience and on a speaker-independent, male-cnly parameter
study. We then tested the tuned algormthm cn the female speakers in the data
base. In addition, we tested the tuned algorithm in a speaker-dependent mode

on the entire TI data base.

Automatic endpoint detection for both training-sequence and classification
utterances was used in our experiments. Our endpoint-¢ ‘ection algorithm is
based on ideas presented in [24,25], and is described 1n [.6). Briefly, the algo-
rithm first analyzes the background noise to determine its average magnitude
and then uses the results to set various thresholds that are used to find

significant “"energy clumps” in the data.

In the rest of this section we describe the data base, the experimental

parameters, and the experiments.

A TI Data Base

The TI data base [23] consists of twenty words: the digits zera through nine
and the ten control words yes, no, erase, rubout, repeat, go. enter, help, stop,
and start. Eight male and eight female speakers each recorded twenty-six
repetitions of each word in the vocabulary, for a total of 8320 utterances. The
data was recorded on analog tape under tightly controiled conditions: the noise
level was low, the speech level was rustricted to a =3 dB range. the acoustic
environment was unvarying, and all derrors in the input words were eliminated.
After collection, the data was low pass flitered and sampled at 12,500 samples

per second. We received the data in digital form on magnetic tape. Each utter-

ance, preceded and followed by short segments of ambient noise, was contained

12




in a separate file. In a previous study using single-section code books _.8], we
used the data primarily at the 2,500 sampling rate. For the work reported
here, the data was down sampled to 8000 samples per second. The down sam-

pling procedure is described in [ 16].

B. Ezperimental Parameters

In this subsection, we describe the experimental parameters associated j
with code book generation and utterance classification. The code book genera-
tion parameters are as follows:

(a) number of utterances in the training sequence;

(b) energy threshold £, where £ is computed by

E= i}-‘qz;

i=1

Here, ¥ is the analysis window width, and z, are the time-domain sam- !
ples from a 12 bit A/D converter after pre-emphasis and Hamming win- l
|

dowing:

{c) left-alignment or length-normalized alignment;

(d) compression factor;

(e) code book type and size. )

The energy threshold is used to ignore nearly-silent frames; frames with
energy below this threshold are not used in designing code books or performing

a classification. For all the work reported here, we used £, =250.
The parameters associated with utterance classification are as follows:

(a) compression factor;




{b) utterance alignment;

{c) energy thresheld.

For consistency these values were chosen to match those used in the code beok

generation.

C. List of Experiments

In this subsection, we list the experiments reported in the remainder of the
paper. The following speaker-independent experiments are listed according teo

the corresponding subsection of Section IV-

A. Complete male-data-base study of recognition accuracy as a function of

compression factor and section code book rate;

Comparison of recognition performance using unclustered and

clustered code books when using the "best” compression factor;
Study of recognition accuracy as a function of the normalization length;

Recognition accuracy comparison using fixed-size and fixed-distortion

code book sets;

Recognition accuracy comparison of left-aligned and length-normalized

approaches;

B. A female-only experiment using parameters that did best during the

male parameter study;

C. Classification of ¢ speakers using code books designed from both male

and female speakers.

Section V. contains the results of speaker-dependent experiments. The

experiments are listed according to the corresponding subsection of Section V:

S W




A,  Comparison of multi-section and single-section recognition perfor-

mance on the sixteen speaker data base;
B. Arate-0 muiti-section study:

C Recognition results for fixed-size code books with shert traimng

sequences;

Recognition results for unclustered code books with short trainng

sequences.

IV. SPEAKER-INDEPENDENT EXPERIMENTS

In this section, we describe three sets of experiments. The first set were
parameter studies done on just the male speakers — we varied the compression
factor, section code book rate, utterance alignment, and code book design
method. Based on the results, we give gwdelines for parameter selection. In the
seccnd set of experiments, the parameters were fixed based on the results of
the first set, and speaker-independent classification experiments were done for
the female speakers. In the last set, a combined male and female recognition

experiment was done.

A Hale Parameter Study

For all parameter studies, the LPC parameters are those specified in sec-
tion ILE. We conside:.'ed each of the 8 male speakers in turn. For each male
speaker, we classified 520 utterances using code books designed from the first 9
utterances from each of the other 7 males. ¥e used multiple repetitions by
speakers in the training sets because of the small number of speakers we had

available, not because we believe it to be an eflicient way to train a recognizer.

In the first parameter study we examined the relationships among

compression factor, section code book rate, and recognition accuracy. We used

15
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a 2¢-frame, length-normalized approach — 24 {rames was approxmately the

average length of the werds in the recognition vocabulary. We used fixed-size.
section code bocks with rates 2,3, and < together with compression facters
123,468, and :2. The results are plotted in Figure .. Note that each pcint on
the plot represents 4160 speaker-independent classifications - 320

classifications per speaker for 8 speakers.

Based on Figure ., we make the following observations:

(a) at each compression factor, the error spread is less than 2% for all sec-

tion code book rates;

{b) the difference in error rates between section code bock rates 2 and 3 is

generally small, but it is consistent and significant;

(c) there is no significant difference in error rates for section code book

rates 3 and 4,
{d) a compression factor between 3 and 6 appears best.

To gain insight into any relationship among word complexity {such as the
number of syllables or phonemes), compression factor, and error rate, we exam-
ined the number of errors as a function of compression factor for the nondigit
words. We had conjectured that simplier words like no, go, and yes would be
easier to recognize usicg larger compression factors, and that more complex
words like repeat, rubout, and start would require smaller compression factors.
The data, however, showed no obvicus correlation between word complexty.

error rate, and compression factor.

Previously [ 18], we performed a similar speaker-independent classification
experiment on these same B male speakers. There we used the single-section

approach and the original 12500 samples per second data. The training method

16
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was the same as used here: nine utterances from each of the seven speakers not
being classified were used to build code books. The analysis conditions con-
sisted of the following: N = 250 {20 milliseconds), analysis window = 250 points,
filter order = .8, pre-emphasis = 90%, and Hamming windowing. As in this study,
the autocorrelation method of LPC was used. Using rate-5, single-section coede
books, an average recognition accurécy of 88% was achieved, as opposed to the
97.5% achieved by the current approach. Thus by using the multi-section
approach, the number of distortion computations per classification has been
reduced {by a factor of 4 for rate-3 section code books), and the number of

errors has been reduced by abecut a factor of 4.

As stated earlier. unclustered code books are generated by making a code-
word out of each frame in the training sequence, and the eflectiveness of clus-

i tering can be evaluated by comparing the peiformance of unclustered and

clustered code books designed from tﬁe same traimng sequence. We bult
unciustered code books using a compression factor of ¢ and the same LPC
analysis parameters as specified for the clustered code books. The result is

marked by NC in Figure 1. The degradation in recogrnuticn performance using

rate-3 clustered code books instead of unclustered code books 1s small ~ about
.5%. Since the rate-3, muiti-section code books are only about - /30 the size of

the unclustered code books and the error rates for the two are close, it is

apparent that the clustering procedure performs an effective data compression

—

furction

I

Next we studied the eflect of normalization length on recogrution accuracy.

We feit that, in general, longer normalization lengths would result in higher

recognition accuracies. Doubling the normalization length, however, also dou-

bles the number of distortion computations needed to compare an input
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utterance with a code book. We were searching for the shortest normalization

length that did not significantly degrade the recognition accuracy. To study
this, we chose normalization lengths of 12, 24, and 36. We used rate-3 section
code books, and the compression factor was adjusted in each case so that there
were 8 section code books per word. Note that for a fixed analysis window width,
increasing normalization length increases the overlap between adjacent analysis

frames.

The results, listed in Table 1. show that the average recognition accuracy
increases gradually with increases in the normalization length. The question

remains, however, whether the increase is significant.

To test for statistical significance, we used the two-sample Wilcoxon rank
sum test [26]. For this test, let F{z) be the probability distribution function
describing the recognition accuracy = of a multi-section approach with a
specific set of multi-section parameters ,compression factor, section code book
rate, normalization length. etc.). In the normalization length study described
above, let Fy(z) be the probability distribution function describing the recogn-
tion performance of one of the shorter length-normalized approachs, and let

F(z) be the probability distribution function for an approach with a longer nor-

malization length. Also, let uy be the mean recognition accuracy corresponding
to F,(z), and let F;{z) have a mean u;. The null hypothesis for our test 1s
Fy{z)=F{(z) ftor all z: thus, u, =u. The alternative hypothesis s

F,{(z)=F,{z+4) tor some positive A, or Fy{z) is shifted to the left of f;{z). Thus

implies us < 4.
We pertormed the Wilcoxon test for all three length combinations: 12 vs. 2¢,
12 vs. 38, and 2¢ vs. 36. The significance levels for rejection of the null

hypothesis of equal mean recognition accuracies were .186, ..04, and 397




respectively. Based on the Wilcoxon test results and the average reccgnition
accuracies, we believe the Increase in computations in going from -2 frames to

24 frames is justified, but the increase in going to 36 frames is not justified.

Previously [.6], we compared the performance of fixed-distortion and
fixed-size code books using the single-section approach. Although in that study
the fixed-size code books performed better than the fixed-distortion code books,
we felt this might not held true when using multi-section code books. One rea-
sen is that each section code book represents only a small portion of a word
instead of the whole word as in the single section approach. This restriction
might reduce the types of confusions that earlier caused fixed-distortion code
books to perform worse than fixed-size code books. The possible advantages of
fixed-distortion code books are that each fixed-distortion code book is only as
large as necessary to satisfy the distortion criterion. Thus it follows that fixed-
distortion code books might iead to the same classification performance as
fixed-size code books but with fewer total codewords. This could lead to smaller

memeoery requirements and faster classification performance.

We chose T = .45 and T = .30 as distortion thresholds, and we designed
fixed-distortion code beoks sets using the same conditions as used in the prewvi-
ous fixed-size code book studies. For the T = 45 threshold, the average section
code book size was 7.35 codewords; for the T =30 threshold, it was .5.99 code-

words.

The average recognition accuracy using the fixed-distortion code beoks with
T = .45 was 96.5%. With T = .30, the recognition accuracy was 96.8%. The fixed-
size, rate-3 and -4 code book sets had recognition accuracies of 97.2% and 97 57
respectively. So, as before [:8], the fixed-size code books discriminate better in

word recognition than do fixed-distortion code books.
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So far, the experiments used length-normaiized code books. We tested the
left-aligned approach using a compression factor of 4, a section code book rate
of 3, and, except for NV {the number of points to shift between successive speech
frames), the same analysis conditions as before. [n the left-alighed experiment,
N was fixed at :80. Left alignment was used both to design code books and to

classify input utterances.

The left-aligned results together with the rate-B-. compression factor 4,
length-nermalized results are shown in Table 1I. The length-normalized
approach is clearly superior. This conclusion is also supported by the Wilcoxon
test: the significance level is .012 for rejecting the null hypothesis of equal mean

recognition accuracies.

The foregoing resuits suggest the following gwdelines:

(a) length normalization should be used with analysis conditions that pro-

vide frame overlap:

(b) the compression factor should correspond to roughly 20% of the nor-

malized length:
(c) fixed-size section code books of at least rate-3 should be used.

Although the speakers in these studies possessed several of the major dialects,
the speaker sample was small and homogeneous - 8 male speakers living in
Texas. Thus, the rate-3 section code books might be too small. In the next two
sections we further evaluate this issue by studying a female speaker sample and

a combined male and female speaker sample.
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B. Female Results

Using a compression factor of ¢ and 24-frame length normalization, we stu-
died speaker-independent recognition using the 8 female speakers. As in the
male study, we classified 520 utterances for each speaker using code books
designed from the first 9 utterances of each speaker not being classified. The
rate-3 and -4 results are listed in Table 1. The rate-+ code books performed
better that the rate-3 code books, but the difference does not appear to be
significant — the Wilcoxon test vields a large significance level of 318 for reject-

ing the null hypothesis of equal average recognition accuracies.

The average recognition accuracy of 93.8% for femaies is significantly less
than the 97.2% found for males. About half of the female errors, however, were
for two speakers: SAS and DFG. On examining the data we found that most of
the errors for DFG occurred for words on which the endpoint detector had
grossly misidentified the endpoints: her voice had a breathy, nasal quality that
was unlike the other speakers. This was not the case for SAS, however There
seemed to be nothing obvicusly unusual about her speech. yet it was difficult to

recognize.

To see if the addition of new speakers to the training sequence would
improve the recognition performance, we recorded data from .0 additionai
female speakers. The speakers were chosen arbitrarily. Each new speaker pro-
vided ! utterance of each vocabulary word. The new data was down sampied to
6000 samples per second using the same procedure as used on the TI data. and
it was added to the previous training data. No analysis or experimental condi-
tions were changed. The results using the expanded traimng sequences are

shown in Table IV.
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The average recognition accuracy increased to 95..% [98.3% for just the
digits), but more interesting, the :mprovement was restricted to the two hardest
speakers: SAS and DFG. Thus, adding more training data improved the recogni-
tion performance for the speakers that were poorly represented by the original
training sequence and neither degraded nor immproved the results for the rest of
the speakers. Table V contains the confusion matrix for the female experiuments
using the expanded .7-speaker training sequence. Sach row contains the results
for classifying all utterances of one word in the recognition vocabulary: the
columns correspond to the different classification decisions. The most {requent
errors were no«-go and stap-five. The no and go errors were generally caused
by their spectral and temporal sirmularities. The rest of the errors are not so
easily categorized, but they usually could be attributed to inadequacies in the

training data or to inaccurate endpoint detection.

C. Combined Hale and Female Results

The separate results for males and females suggest that a rate-3, muiti-
section code book is adequate for recognition purposes. This may not be the
case for mixed populations, however. Because general differences in male and
female vocal tracts sizes lead to characteristic formant shifts for the same
speech sounds, larger code book sizes might be required to maintain perfor-
mance for mixed populations. We examined this issue by performung a recogni-
tion experiment on a 4 speaker subset of the T] data base {2 malés: RLD and
GRD, and 2 females: SAS and ALK). We used code books designed from the
remaining 12 speakers — each speaker provided 9 utterances of each word as

training data.

The results for section code book rates ! through 5 are shown in Table V1.

For this small speaker sample, no significant improvement resulted from a




section code book rate greater than 3. Table VII contains the individual rate-2
results for the combired male-female trairung data experiment and the eariier
rate-3 single-sex experuments. A large increase in recognition accuracy for SAS
offset small decreases in recognition accuracy for the rest of the speakers, and
the average recognition accuracy using the combined-sex trammung sequences
was about the same as that using the single-sex training sequences. The spread
in recognition accuracles, however, using the combined-sex traiming sequences
has been dramaticly reduced. The reduced spread in recogniticn accuracies
suggests the .2-speaker trainung sequences characterize the general population
better than the 7-speaker trainung sequences used earlier, and it gives evidence
that increased stability of performance would result from using richer traimung

sequences.

V. SPEAKER-DEPENDENT EXPERIMENTS

In this section., we describe the results of speaker-dependent experiments.
In the first experiment, the multi-section approach was tested on the full T] data
base. In the second, two multi-section rate-0 approaches were compared, and in
the final experiment, the effect of short training sequences was examined. All
the experiments described in this section used the 24-frame, length-normalized

approach.

A Mulbi-Section Results

In the speaker-independent study described in the last section, goed recog-
nition performance required a section code book rate of at least 3. It seems
reasonable, however, that a smaller section code book rate might suffice for
speaker-dependent recognition. To evaluate this possibility, we performed

speaker-dependent recognition experiments using the 8 speakers in the TI data
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base For each speaker, the first 0 utterances of each word were used as a

training sequence. We used a compression factor of 4 and section code book

rates O, .. and 2.

Tabie VIII contains the results for all .6 speakers. The first 8 are male and
the last 8 are female, and the male results are slightly better than the female
results. As one would expect, the average recognition accuracy improves with
increases in section code book rate. Using the two-sample Wilcoxon test to com-
pare the rate-0 vs. rate-i, rate-. vs. rate-2, and rate-0 vs. rate-2 results, the
signuficance levels for rejection of the nuil hypotheses of equal average recogni-
tion accuracies were ..38, .133, and .03. respectively. Based cn the Wilcoxon
test results and the average recognition accuractes, we believe the use of rate-2
section code books significantly increases the recognition accuracy compared to

rates 0 and i.

The average recognition accuracy obtained with the rate-2 section code
books was 98.7%. A confusion matrix for these results is shown in Table IX. The
most frequent errors were go+«-no, stop-five, and start-five. Most of the go
and no classification errors were due to their spectral and temporal sirmilarities.
Many of the other classification errors can be attributed to time alignment prob-

lems caused by inadequacies of the endpoint detector.

To be more specific, we examined the errors made using the rate-2 secticn
code books: thex;e wee 66 words incorrectly classified. The endpoints had been
rmisidentified on 42 of those 68 words. We hand labeled the endpoints on those
42 words and reclassified them in the original code books. Thirty-eight of the 42
words were now correctly identified, and the average recognition accuracy
increased to 99.5%. This improvement points out the importance of accurate

endpoint detection.
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In our previous single-section work ":6], we performed a similar speaker-
dependent classification experiment on the Tl data base. [n that work, the
12500 samples per second data was used together with the following analysis
conditions: .V = 250 points, analysis window = 250 points, analysis filter order =
16, pre-emphasis = 907, and Hamming windowing. As in this study, we used the
autocorrelation method of LPC and the first 10 utterances of each word for each
speaker as training data. The recognition a.'ccuracy using single-section, rate-3
code books on the full bandwidth data was about the same as using multi-
section, rate-2 code books on the narrow bandwidth data: 98.8% and 98.7%
respectively. Based on reductions in both the analysis filter order and the sec-
tion code book rate, incorporating time-sequence information reduced the com-
putational requirements by slightly more than a factor of 3, at the expense of

doubling the memeory required.

B. Rate-0 Multi-Section Study

The most remarkable aspect of the above speaker-dependent resuits is the
high recognition accuracy of the rate-0 code books. The multi-section code
book for each word consists of only 6 codewords ~ one codeword per section —
and the classification of an input utterance requires only one distorti~n compu-
tation per input frame for each vocabulary word. Moreover, the code bock gen-
eration consists simply of computing autocorrelations and averaging them,
which is also easy to do quickly. Yet, despite these major simplifications. a
recognition accuracy of 97.8% was achieved. Considering only the digits, the
recognition accuracy was 99.57%.

Building references by linearly normalizing the training utterances to the

same length, and then computing the average of a set of parameters for each

frame in the normalized word, is an approach that many researchers evaluated
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before the introduction of dynamic programming and whole-utterance cluster-

ing techniques. Our rate-0, compression factor 4 {(ROC4) approach s a
moedification of that normalize-the-utterance and average-each-frame {NUAF)
approach using autocorrelations as the parameters. Because of the similarity
between the two approaches, it is reasonable to ask if our ROC4 approach 1s any

better than the old NUAF approach. '

In the terminology of this paper, the NUAF approach corresponds to using
rate-0, compression factor . {(ROC.) code books. So, we designed ROC. code
books and evaluated them. Based on the speaker-independent parameter study
results, we expected the larger compression factor code books {R0C%) to per-

form better than the smaller compression factor code books {(ROC:).

Table X contains the ROC1 results along with the previous ROC4 results frem
Table VIII. Each compression factor 4 result is better than or equal to the
compression factor 1 result except for speaker WMF, and using the Wilcoxen test
on the two samples, the significance level for rejecticn of the null hypothesis of
equal average recognition accuracies is .159. We believe the improved perfor-
mance using a compression factor of 4 is because of two things: the slowly vary-
ing nature of speech spectra and the freedom from strict time alignment that a
compression factor of 4 allows. Apparently, averaging the spectra in the train-
ing sequence over small sections of a word produce reference spectra that
characterize a speaker’s variation in pronunciation better then averaging over a
single frame. Although the significance level for iejection of the null hypothesis

is somewhat large, the amount of storage for each code book is reduced and the

recognition accuracies are better using a compression factor of 4.




C. Short Training Sequences

Many speaker-dependent isolated word recognition devices on the market
today use from - to 3 tramning utterances to train the system 27]). Although our
previous results ~16] suggested the inadequacy of short training sequences, we
confirmed this expectation Using a compression factor of ¢ and the first 2
utterances of each word as the traihmg sequence, we classified the same 320
utterances as above for each of the 16 speakers. The average recognition accu-
racles were 9467, 95.6%, and 95.7% for rate-0, rate-i, and rate-2 multi-secticn
code books respectively. This is a decrease of about 3% at each rate relative to

the results using :0-utterance training sequences {see Table VIII).

Finally, we performed a recognition experiment on 4 speakers using .-
utterance training sequences. We used unclustered code books to retain all the
irformation in the training data, and we used a compression factor of £ These
results along with the 2- and 10-utterance tramning sequence, rate-2 results a.ré
shown in Table XI. The eflect of using only one training utterance is dramatic.

The average recognition accuracy for this 4 speaker subset has fallen to 90.9%.

These re-ults using short training sequences simply emphasize what is com-
monly known: there is much variability in a speaker’s pronunciation of a partic-

uiar word.

V1. COMPUTATIONAL AND MEMORY CONSIDERATIONS

It 1s interesting to compare the computational and memory requirements
of the multi-section VQ approach to those of DTW for the classification of an
unknown input utterance. As we pointed out earlier, the requirements fer the
DTW approach can be substantially reduced by incorporating VQ into the DTW

procedure, but we do not consider that case here. Our intention is to compare
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' the computaticnal and memory requirements of the multi-section VQ with that
of "classical” DTW '28]. Savings obtained by tracking the average distortion
during classification to reject several of the hypotheses or using table-storage

and look-up are also not considered.

In this analysis, we consider only the length-normalized approach. Let A be

the LPC analysis filter order, Vg be the number of codewords per section cede
book, n be the compression factor, and Ly be the normalization length. Then

the memory required for a multi-section code book is

(M+)

[z
Nsec ceil{—ni

real numbers, where ceil [X] is the smallest integer greater than or equal to .X.
Since the input word is normalized to Ly frames, classification requires Ngply

distortion computations per multi-section code book.

In DTW approaches, the reference template and the input utterance are
often linearly normalized to the same length L before doing DTW  28]. High
recognition accuracies can then be achieved with aL? distortion computations
per reference template, where a is in the range .20 to .35 [28]. Each reference
template requires L storage locations, and to achueve high recognition accura-
cies, several reference templates per vocabulary word are normally stored. For
speaker-dependent recognition, the number of reference ternplates @, 1s usually

one or two; for speakor-independent recognition, @ is normally about ten '29].
It follows that the ratio D of the number of distortion calcuiations required
by the VQ approach to the number required by the DTW approach is about

D=~ Nsely/ al?Q. For fixed-size code books with Nsc=2RSC. where Rsc is the sec-

tion code book rate, and for a nominal value of a ®.25, the ratio becomes i
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D~2Pse*?, /129

We shall assume that both normalization lengths are L = Ly = 32 frames (640
milliseconds at 20 milliseconds per frame) — this is perhaps too large, but it is
conveniently a power of two. It follows that the ratio of distortion calcuiations

becomes

Ren-3
2 SC
D=

7 (13)

For our best speaker-dependent results — 98.7% correct using a section
code book rate Rsc=2 — (13) shows the ratio of distortion computations to be
1/2Q. Since @ is .usually 1 or 2 for the speaker-dependent case, this shows that
the multi-section VQ approach requires fewer distortion computations than DTW.
The 98.7% speaker-dependent recognition accuracy of the multi-secticn
approach is comparable with that achieved by other approaches on this data
base [23]. For speaker-independent recognition, the multi-section approach
required the rate Rsc=3. For this case, {13) shows the ratio of distortion com-
putations to be 1/@. Since & is approximately 10 for the speaker-independent

case, this shows that the multi-section approach requires an order of magntude

fewer distortion computations than DTW.

The ratio # of memory locations required by the multi-section approach to

the number required by the DTW approach is

[

L
Ngc ceil =¥
Wy —

Ly@ '

where the length of a DTW reference L has been assurned equal to the normaliza-

tion length Ly. Using a Ly=32, a n=2Ly and substituting 2fsc tor Nse.
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offsc-27
N ——— 14
W 3 (14)

Equation {14) shows that for reasonable values of § and Rsc, speaker-dependent
recognition using the multi-section approach requires about one-half the
memory that DTW requires, and for speaker-independent recognition, the multi-

section approach requires only 1/8 the memory that DTW requires.

During classification, the input speech frames provide the argument f in
(9). It follows that both the time-domain autocorrelations »{n) and the LPC zain
squared ¢® must be known for each input frame, which in turn means that an
LPC analysis must be done. For the dg distorticn measure. however. the gan

enters as a constant term {ln(¢?)) that contributes a constant term in the com-

putation of the average code book distortions {3). The classification can there-
fore be done without this term, so no LPC analysis of the input utterance is

required — only autocorrelations need be computed.

The software for these experiments was written in FORTRAN-77 and run on a
DEC VAX:11/750 with a floating point accelerator. Starting with the autocorrela-
tions from a 63-utterance training sequence, generating the fixed-size, rate-3,

multi-section code books required about 2 minutes of execution time each.

Classiflcation of a single utterance with these code books took about 0.. second
per code book — about ten times faster than our previous approach to speaker
independent recognition [18]. The speedup is the result of a combination of fac-
tors: the section code books are smaller than the previous single-section code t
books (8 code words instead of 32 code words), the narrower bandwidth data X

(4000 Hz. vs 8250 Hz.) allowed a reduction in the LPC filter order from :6** to

10, and autocorrelations were computed over a .8 millisecond wmindow instead
of a 20 millisecond window. Since all the software was designed for research

purposes, specially designed programs shouid run considerably faster
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VII. SUMMARY AND DISCUSSION

In comparison to our previous single-section resulls .C!, ihe nccrporation

of time-sequence information into the VQ recognition procedure has impreved

age recoghition accuracy for the 20-word vocabulary .ncreased from 38% to 577
with a factor of £ reduction 1a computational compiexity or lemale speaders,
the average speaker-independent recognition accuracy was 957 on the 20-word
vocabulary, and it was $8.57% on just the digits. For speaker-deperndent recogru-
tion, the multi- and single-section approach performed approximately the same,
but the muiti-section approach required only half the number of distortica coni-
putations. The costs for the computational and accuracy improvements of the
muiti-section approach are a slightly more complicated controi structure and

an increase in memory for code book storage.

Perhaps the most remarkable multi-section VQ resuit was the $7.8% ([69.5%
for digits) speaker-dependent recognition accuracy for the rate-0 section code
books. COnly six spectra are usad to characterize each vecabuiary word,
classification requires only one distortion computation per input speech frame

per vocabulary word. and the code book design requuires no ciustering.

The memory requirements and computational compiexity of the speaker-
dependent, multi-section approach are about ./2 %o 1< those of the DTW
approach. for speaker-independent recognition the rnulti-section approach
requres only about ./8 the memory and ./.0 the distortion computations of
DTW. It follows that the multi-section approach will be particularly useful when

the computational and memeory burden of multiple templates cannot be

afforded.




As general conclusions about the multi-section VQ approach. we offer the

following:

{a) all utterances should be length normalized before processing:

{b) the normalization length should be as long as computational con-

straints permit {up to the maximum word length expected);
{c) the analysis conditions should pronide frame overiap:;

(d) for speaker-independent recognition, a section code bock rate of at

least 3 is required;

(e) tor speaker-dependent recognition. a section code book rate of at least
Z is required;

(f) short training sequences cannot be used;

(g) accurate endpoint detection is important.

The success of the multi-section approach is due primarily to two things.
First, VQ code books are an efficient representation of the training data. Second,
multi-section code books allow flexibility in the time alignment of an input utter-
ance with a code book, but they enferce sectional time alignment. In fact, there
is an analogy in the time alignment procedures of DTW and multi-section VQ. Nel-
ther enforces a strict sequential frame by frame comparison of the input and
references, and both find locally a best path through the reference. The analegy
quickly breaks down, but it is clear that the nonlinear time alignrnent allowed by

both approaches contributes to their success.

Our results are encouraging, but they were for a small, homogeneous set of

speakers. How multi-section VQ will perform on a larger, more diverse

population is an open question, which we intend to investigate.




Our original single-section VQ approach tried to model each vocabulary
word as a discrete memoryless source. Although the results were good, this
model is, of course, naive. A better source model for an 1solated word is a Mar-
kov model, and many researchers have used this idea _30,3?, 15]. Multi-section
VQ is an ad hoc way of incorporating memory. It can be viewed as a one-step
Markov model with transition probabilities that are either zero or oﬁe for moving
to the next state or section. It would be more satistying, and we suspect more
accurate, if the states and the state representations for a word were determined

i by the same criterion as that used in desigrung a memoryless VQ code book —
minimizing the distortion between the training data and the representaticn.

Some steps in this direction have been made.

Ostendorf and Gray have developed an algorithm for designing both a
separate zero memory quantizer for each of a finite number of states and a set
of next-state functions depending only on the current state and codeword to
update the state [32]. Using this algorithm, a separate finite-state vector quan-

tizer could be designed for each vocabulary word, and an unknown input utter-

ance could be classified by encoding it in each of the finite-state vector quanti-
zation code books, just as is now done with the multi-section code books. Since
time-sequence information is implicit in the next-state function, and since a
state code book is likely to be smaller than a section code book, the recogniticn

accuracy should improve and the computational complexity should decrease.
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sions; we thank R. M. Gray for providing some of the vector quantization
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Table [. Male Speaker-Independent Recognition: Length-Normalization Study
| | Length = N Length = 5 Length =
: ) :2 Frames ' 24 Frames : 36 Frames
! : | ! ! :
No. 4 Ry  Re % T Ry ! /4 Ray R,
 Speaker Class. | Correct ! Correct ‘ _Correct
' TBS 520 , 972 589 ' 389, 977 53t .30. = 973 800 30
. WMF 520, 940 , 645 464, 967 639 396 . 979 829 205
' RLD |, 520 | 956 @ 685, 5:6 | 954 653 ' 472 96.4 672 182
! GRD | 520 | 93.. | 469 ..342, 958 459 336 ;| 95.8 475 33
KAB | 320 | 958 - 667 . 480 i 96.0 852 . 415, 952 862 453
, MSW , 520 985 ' 869, .5€2 , 98.: | B35 478 987 822 452
. REH ' 520 ’ 98.5 | 1.:07 575, 989 1030 523, 99.0  :.089 5.7
LRGl 520 | 979 997 _594 99 872 237 ' 9948 850 250
——all | 460 ' 963 745  53: ! 972 75 465 975 725 €7
, 1
Table ]I. Male Speaker-lndependent Recognition: Left-Aligned vs. Length-

Normalized Code Books ig
{
Speaker ] | Left Aligned . Length Normalized '
\ P ! Class. i EBrrors - ZRight R, @ R,  Errors ZRight Rg R i
| WMF | s20 j 3¢ | 985 | 591, 407 17 96.7 639 .398
. RLD 520 | 21 | 960 | 629 398, 2¢ = 954& 653 472
| RGL | 520 ; 14 | 973 | 819! 496 3 = 994 . 874 487
' Msw | s20 ¢ 22 958 | 517 ,.407 . 10 , 98 835 478
' GRD ] 520 | 25 | 952 , 422 314 t 22 9538 459 = 328
¢ TBS | 520 ] 20 | 962 | 584 .39 12 | 977 5B .30*
| kaB | 5201 3¢ | 935 | 608 s29| 21 | 960 | es2 &
4. 220 28952 957 3.2 § 9689 "O%L&
(el | 4:60 i (95 ' 953 ' B84: ' 248 ::5 97.2 7.5 485
Table III. Female Speaker-Independent Recognition: Secticn Rates 3 and ¢ »
i No. ! Section Bate 3 . Section Rate & ‘ 4
| Speaker | ~iass. MErrors | ZRight  Ra, R, 'Errors  ZRight  Ra,  R.
ALK | 520 | 29 | 944 | 556 389 | 23 | 956 | 587 407 )
P | S0 ¢ 15 . 971 | 558  .366 [ 3 975  .367 389 ‘
DFG , 52 | 56 | 6892 363, 320, 51 ' 902 | 35 305
GNL . 520 | 33 ' 937 ' 705 .87, 21 960 | 702 5.4
HN ¢ 520 ) 20 | 942 ' 535 219 27 948 561 .420
JWS . 520 ; i3 , 975 . 813 592 5 971 795 ' .566 2
SAS | 5R0 I 73 | 880 . 545 528 [ 61 , 883 | .561 .537 .
r_ﬂﬂ M- I S B - - s -~ 4?.’#_@ SO < MR |- S M > 1y
_all ' 4:60 1 258 '~ 938 590 465 ! 225 . 946 602 270




Table IV. Female Speaker-Independent Recognition: .7-Speaker Training Data,
Section Rates 3 and <

ES caker | No. Section Rate 3 f Section Rate ¢

| P ' Class. | Errors Z%Right R R. 'Errors ZRight Ro R
ALK 520 | 28 | 950 | .553 376, 2. | 960 .565 .38«
' P 520 | 18 ' 975 | 542 339' 5 | 97.. 550 365
| DFG ; 520 1{ 40 | 923 352 300 &2 9:9  3¢8 308
. GNL | 520 | 23 | 956 . 745 515 15 | 97: 742 489
. HNJ 5200 32 | 939 . 546, 407 23 956 58 413
.~ JWS 320 : 23 | 956 BO3 560, 9 . 964  BOO .59
© SAS |, 520 | 38 , 93: 569 485 1 47 9:.0 557 5.5
SN s20 | 12 ! 977 gse 3o 5 97- - gg: z@
[ all 4:680 | 205 ' g5: 585 ¢80 ° 197 95.3 6Q. 462

Table V. Confusion Matrix for Female Speaker-Independent Recogmtion:

Compression Factor = ¢, Section Rate = 3, {7-Speaker Training Sequence

EN-  ER- RUB- RE-
[+} 1 2 3 4 s 8 ? 8 § TER ASE GO HELP NO OUT PEAT STOP START YES

s 204 1 . . . . . . . . 3 . . . 1
1 200 1 ] 1

2 2 200 . 8

3 203 . 3 2

4 208

S 203 . 1 . . . 4

8 . 207 . . . . . . 1

7 1 1 1 208 .

8 . 1 . 4 192 4 5 . : . 2

[ 3 1 . 03 . . 1

ENTER 1 1 200 .

ERASE 208

GO 4 1 4 158 & »

HELP 1 . 207

NO 2 2 . a1 2 17

RUBOUT 1 1 208

REPEAT 3 5 200

STop . . . 18 3 . . 2 . 17% 9

START 1 . . 1 1 1 . . . ) 1 . . . [} 197

YES ) 1 13 1 22

Table VI. Resuits Using Combined Male and Female Training Data: Compression
Factor = 4

Section T No.

. i .
1 12080 | 192 | 908 ' 355 .305.
2 2080 | 155 926 | 407 | 334
|3 2080 | 138 | 934 | 428 334
4 4 2080 | 131 | 937 | .457 | .38
s 2080 i 331 937 | <84 | 388'
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Table VII. Comparison of Results for Single-Sex and Combined Training Data:
Compression Factor = ¢, Section Rate = 3

‘1

14

:Speaker ' No. : ‘Comblned-Sex . ‘ Single-Sex

: | Class. | Errors ~ %Z Right R, R, . Errors % Right R, i

" RLD , 520 7 29 , 944 . 469 344, 2¢ = 954 653 47

( GRD | 520 f 38 | 927 , 333,255, 22 95.8 . 459 336

¢ SAS . 520/ 34 : 935 473/ 3721 73 86.0 545 ' 328

: . . ! 238 ' 338 « 29 94 ¢ 556 ___389
all ' 2080 ' :38 934 - 429 334 | 48 929 553 43

Table VIII. Section Rate Study For Speaker-Dependent Recognition

| Comp. Fact. = 4 Comp. Fact. =¢ | Comp. Fact. = 2
r Section Rate = 0 ~ Section Rate = | ___Section Rate = 2
No. | % | R | Rg %  Ra | R, % - Rm | R,
 Speaker Class. | Correct ' ! ! Correct | Correct !

; TBS 320 988 | 1.00 | 56 | 1000 145 77| 1000 68 .95
| WMF 320 98.8 = .95 46) 988 126 69 991 . lal| 76,
RLD | 320 ) 975 .79 .52, 98: 115 .78 | 99+ .35 .90

GRD | 320 956 = .73' 47| 959 ' 106 69 963 128 80
| kKaB | 320 997 | 78 .42 | 994 ':06 59 997 ':22' .68
| usw 320 98.4 102 51| 988 151 .73 89.1 7. B
. REH ' 320 978 117 61, 988 .76 89 49.. 208, :.03
| RGL | 320 | 1000  ::3 .52) 1000 .63 .79} 1000 B9 .98
' CJP | 320 959 ; 9¢i 53' 978 ' 136 .74, 978 160 ' .86
| DFG | 320 | 953 . 5230 975 = 84 .47 §6.1 | 103 357
| ALK | 820 | 994 . 95, .55 994 . 144 B4, 997 | 179 .0
| HNJ | 320, 953 , .78, 48 956 . 120 .74 96.3 145 82
. GNL | 320 ) 978 |12¢| .96 988 | 179 129 98.8 2:9 ' 149
;WS | 320 { e. ( 98 .57 988 L 163 .99 | 994 180, 113
! SIN | 320 ) 997 ;106 6:] 997 160 86 | 997 203 109
i : %—l&%éﬂ——ﬁ» =54 —d 87 063 58 Q98
L all ' 5120 978 93 58 ' 984 38 Bg | 987 .84 O




Table IX. Full Data Base Speaker-Dependent Confusion Matrix: Compression Fac-
tor = 4, Section Rate =2

EN- ER- RUB- RE-
0 i 2 3 4 3 [] ? a 9 TER ASE GO HELP NO COUT PEAT STOP START YES

[+] 238 1

1 231 3 2

2 286

3 24 2

4 1 288

s 254 2

8 256

? 2 2 1 1 1
8 1 252 1 1 1

9 1 255

ENTER 2ss 1
ERASE 1 254 1

GO 1 24 1 3

HELP 1 . 253 2

NO. 2 H 8 1

RUBOUT . . . . . . . . . 230

STOP 8 1 2 . 248
START 2 s 2 1 248
YES 256

Table X. Compression Factor Study For Speaker-Dependent Recognition: Section

Rate =0
| Comp.Fact.=1 | Comp.Fact.=¢
, | SectionRate=0 | Section Rate=0
] | No. | =% w | Ra | % | Rm | Rq |
Speaker | Class. | Correct ! |_Correct } e
TBS 320 | 978 | 1.37 | 94| 988 1.00: 56
WMF 320 99.1 1.17 | 71| 9838 95 | 46 |
RLD 320 96.9 1.0¢ . .79 97.5 | .79, .52 -
GRD 320 | 947 971 69} 955 , .73 .47
KAB 320 § 991 |:01| 69} 997 | 7B .42
MSW | 320 | 984 | 87| 984 | 102 5|
REH 320 | 978 | 189 105{ 978 . 1.17, .61 .
RGL 320 | 994 | 158, .87) 1000 ' 113! .52
CJP 320 | 9568 135, 85! 959 @ 94! 53
DFG 320 95.3 73] 44y 953 : 52 30
ALK 320 | 9@ | :47 101, 994 ' 95] 55.
HNJ 320 | 941 | 113! 85 | 953 | 78 48!
GNL 320 | 969 | 191|167} 978 , 12¢ | 96
JWS 320 972 | 151107 981 98 | .57 |
SJIN 320 | 98.8 167 ) 111 " 99.7 L.06 | 61
Ml m lﬁ ‘%M
1 5120 | 972 134 :00] 978 93 58
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Table XI. Speaker-Dependent Training Sequence Study: Compression Factor =

- il

i Utterance ii 2 Utterance i 10 Utterance
! Training Seq. i Trainung Seq. ) Training Seq.
| (Unclustered) il {Clustered) ! {Clustered)
! No. | 2% | Rw | Re | % | Ray | | | R, R
" Speaker | o\, cc ! Coprect | | “ Correct . | ' “ Correct ' . ’
| TBS | 320 ) 950 | .oes¥ 753 | 959 | 1.342 | 900 | 1000 | 3694 952
WMF | 320 89.7 807‘ 978 . L .60 | 684, 995 - a2 ' 756 ‘
l RLD 320 88.8 | 790 ‘ .895 ,' 92.8 g 719 ( 99.4 ; 1.353 . .900
Fr-{V I R0 N UM - - M- NS 1 - ’94 e Dl 802 86
1080 | 909 916 ' 7651 950 . .16 - BO2 | 99 . 5.5 B8i
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